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Abstract. An effective Coulomb gauge Hamiltonian, Heff, is used to calculate the light (uūg), strange (ss̄g)
and charmed (cc̄g) hybrid meson spectra. For the same two parameter Heff providing glueball masses con-
sistent with lattice results and a good description of the observed u, d, s and c quark mesons, a large-scale
variational treatment predicts that the lightest hybrid has JPC = 0++ and mass 2.1 GeV. The lightest exotic
1−+ state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical
formulations all indicate that the observed 1−+ π1(1600) and, more clearly, π1(1400) are not hybrid states.
The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the
ground state hybrids have 1+− with masses 2.1 and 3.8 GeV, while the first exotic 1−+ states are at 2.4 and
4.0 GeV. Finally, using our hybrid wavefunctions and the Franck–Condon principle, a novel experimental
signature is presented to assist heavy hybrid meson searches.

PACS. 12.39.Mk; 12.39.Pn; 12.39.Ki; 12.40.Yx

1 Introduction

Following the “eightfold way” (Gell-Mann and Ne’eman),
the “quark model” (Gell-Mann and Zweig), along with
subsequent extensions, has generally explained the ob-
served hadronic spectrum. This is especially true for heavy
flavored mesons where certain corrections can be ignored.
Even in the light sector, the phenomenological quark
model works reasonably well. However, the existence of
hadrons with exotic quantum numbers (i.e. JPC states
not possible in qq̄ or qqq systems) clearly reveals that this
model is not complete. It is also expected that there are ex-
otic hadrons with conventional quantum numbers that also
cannot be described by the quark model, e.g., glueballs gg,
hybrid mesons qqg and tetraquarks qqqq.
Possible experimental evidence for a 1−+ exotic state

was first reported in 1988 [1], but the situation was not
clarified until several years later. Now it is believed that
there exist two states with these quantum numbers be-
low 2GeV: π1(1400) [2, 3] and π1(1600) [4, 5] (note that
a recent analysis [6] finds no evidence for either candi-
date). There are also other reported hybrid candidates
with JPC = 0−+ [7, 8], 1−− [9] and 2−+ [10–12].
Theoretically, the structure of the π1 states remains un-

clear. They could be hybrid or tetraquark mesons, with
most theoretical studies [13, 14] investigating the former.
Lattice gauge simulations [15–19] predict that the light-
est hybrid meson is between 1.7 and 2.1 GeV, and results

a e-mail: fllanes@fis.ucm.es

from the flux tube model [20–22] also span much of this
range. Only the vintage Bag model [23–29] calculations
yield a lower mass, between 1.3 and 1.8 GeV, but [30] ar-
gues that the π1(1400) is not a hybrid. Table 1 lists predic-
tions for the u/d, s and c 1−+ hybrid mesons.
In this work, we study qq̄g hybrid states using a field

theoretical, relativistic many-body approach based upon
an effective QCD Hamiltonian, Heff, formulated in the
Coulomb gauge. This model successfully describes the me-
son spectrum [34, 35] and is also consistent [36] with lat-
tice glueball (and oddball) predictions. Using standard
bare current quark masses, it properly incorporates chiral
symmetry, yet dynamically generates a constituent mass
and spontaneous chiral symmetry breaking [37]. Further,
it provides a good description of the vacuum properties
(quark and gluon condensates) and respects the global,
internal symmetries of QCD, as well as the spatial Eu-
clidean group, all within a minimal two parameter theory.
Our work also extends an earlier hybrid calculation [44]

Table 1. Published predicted 1−+ masses, in GeV, for light,
strange and charmed hybrid mesons

Model [reference] u/d hybrid s hybrid c hybrid

Lattice QCD 1.7–2.1 1.9 4.2–4.4
[15–19, 31–33]
Flux tube [20–22] 1.8–2.1 2.1–2.3 4.1–4.5
Bag model [23–29] 1.3–1.8 3.9
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by including previously omitted terms in the Hamiltonian
and by comprehensively predicting the light, strange and
charmed hybrid meson spectra.
This paper is organized into eight sections. In Sects. 2

and 3 our model Hamiltonian, an approximation to the
exact QCD Hamiltonian, is presented along with an im-
proved hyperfine interaction that provides realistic spin
splittings in both light and heavy mesons [35] and, for the
first time, the non-abelian contributions from the color
magnetic fields. Section 4 details the corresponding im-
proved quark and gluon gap equations and a variational
formulation for the hybrid meson problem is developed
in Sect. 5. Calculations and new results are discussed in
Sect. 6, while in Sect. 7 we develop a novel experimental
signature for observing hybrid mesons having both conven-
tional and exotic quantum numbers. Finally, we summa-
rize our results and conclusions in Sect. 8.

2 Effective Hamiltonian

The exact QCD Hamiltonian in the Coulomb gauge [45] is
(summation over repeated indices is used throughout this
paper)

HQCD =Hq+Hg+Hqg+HC , (1)

Hq =

∫
dxΨ†(x)[−iα ·∇+βm]Ψ(x) , (2)

Hg =
1

2

∫
dx
[
J−1Πa(x) ·JΠa(x)+Ba(x) ·Ba(x)

]
,

(3)

Hqg = g

∫
dxJa(x) ·Aa(x) , (4)

HC =−
g2

2

∫
dxdyρa(x)J−1Kab(x,y)J ρb(y) . (5)

Here g is the QCD coupling, Ψ is the quark field with cur-
rent quark mass m, Aa are the gluon fields satisfying the
transverse gauge condition,∇·Aa = 0, a= 1, 2, . . . , 8, and
Πa are the conjugate fields, and Ba are the non-abelian
magnetic fields

Ba =∇×Aa+
1

2
gfabcAb×Ac . (6)

The color densities, ρa(x), and quark color currents, Ja, are
related to the fields by

ρa(x) = Ψ†(x)T aΨ(x)+fabcAb(x) ·Πc(x) , (7)

Ja = Ψ†(x)αT aΨ(x) , (8)

where T a = λ
a

2 and f
abc are the SU(3) color matrices and

structure constants, respectively. The Faddeev–Popov de-
terminant, J = det(M), of the matrix M =∇·D, with
covariant derivativeDab = δab∇−gfabcAc, is a measure of
the gauge manifold curvature, and the kernel in (5) is given
by Kab(x,y) = 〈x, a|M−1∇2M−1|y, b〉. The Coulomb
gauge Hamiltonian is renormalizable, permits resolution
of the Gribov problem, preserves rotational invariance,

avoids spurious retardation corrections, aids identification
of dominant, low energy potentials and does not introduce
unphysical degrees of freedom (ghosts) [46].
The bare parton fields have the following normal mode

expansions (bare quark spinors u, v, helicity, λ=±1, and
color vectors ε̂C=1,2,3):

Ψ(x) =

∫
dk

(2π)3
ΨC(k)e

ik·xε̂C , (9)

ΨC(k) = uλ(k)bλC(k)+ vλ(−k)d
†
λC(−k) , (10)

Aa(x) =

∫
dk

(2π)3
1
√
2k
[aa(k)+aa†(−k)]eik·x , (11)

Πa(x) =−i

∫
dk

(2π)3

√
k

2
[aa(k)−aa†(−k)]eik·x ,

(12)

with the Coulomb gauge transverse condition, k ·aa(k) =
(−1)µkµaa−µ(k) = 0. Here bλC(k), dλC(−k) and a

a
µ(k) (µ=

0,±1) are the bare quark, anti-quark and gluon Fock op-
erators, the latter satisfying the transverse commutation
relations,[

aaµ(k), a
b†
µ′
(k′)
]
= (2π)3δabδ

3(k−k′)Dµµ′(k) , (13)

with

Dµµ′(k) = δµµ′ − (−1)
µkµk−µ′

k2
. (14)

Our effective Hamiltonian,Heff, follows fromHQCD by:

1. replacing the Coulomb kernel in (5) with a calculable
confining kernel, i.e.

g2J−1Kab(x,y)J −→ V̂ (x, y)δab ; (15)

2. replacing the Faddeev–Popov determinant in (3) by its
lowest-order unit value, J = det(M)→ 1;

3. approximating the quark–gluon term, (4), by substitut-
ing for the gluon vector potential a transverse gluon
propagator (kernel) and quark source current having
the same color structure

Hqg −→ VT =
1

2

∫ ∫
dxdyJai (x)Ûij(x,y)J

a
j (y) .

(16)

This is further discussed in the next section, where the
form of the kernel Ûij(x,y) is specified.

Regarding the confining kernel V̂ , two different forms
are employed in this study to provide some measure of the
model sensitivity. The first is a simple, phenomenological
Cornell type potential,

V̂ (r = |x−y|) = V̂C(r)+ V̂L(r) , (17)

V̂C(r) =−
αs

r
, (18)

V̂L(r) = σr , (19)

where the string tension, σ = 0.135GeV2, and αs =
g2

4π =
0.4 have been previously determined. The Fourier trans-
form of V̂ is denoted by V , and in momentum space
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these potentials take the form VL(|p|) = −8πσ/p4 and
VC(|p|) =−4παs/p2. The other one is a theoretically mo-
tivated potential [47] having a renormalization improved
short-ranged behavior. This potential was utilized in a pre-
vious meson study [35] and has the momentum space repre-
sentation

V (|p|) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 8.04
p2

ln−0.62
(
p2

m2g
+0.82

)

ln0.8
(
p2

m2g
+1.41

) , p >mg ,

−
12.25m1.93g

p3.93
, p <mg .

(20)

The parametermg sets the string tension and is related to
σ bymg ∼=

√
8πσ/12.25≈ 600MeV.

Due to the above approximations our Coulomb gauge
approach is not rigorous QCD but rather a model. How-
ever, as mentioned in the introduction, we believe that
approximate many-body diagonalizations of Heff capture
much of the QCD nature of hadrons, and model predic-
tions should provide a realistic description fruitful for ob-
taining insight in their structure. There are several rea-
sons supporting this contention. First, the vacuum ex-
pectation value of the rigorous Coulomb kernel is known
to have approximately the shape of the Cornell potential
from lattice studies [38, 39]. Second, we know that confine-
ment manifests itself in this kernel and not in transverse
gluon exchange (the Hqg term), which is suppressed in the
Coulomb gauge by an energy gap (for a recent account
see [40]). Third, the connection between the gluon mass
gap and the kernel used in this work is based on a sim-
ple gap equation (see Sect. 4) where the cutoff plays the
role of a dynamical mass counterterm. This treatment is
consistent with SU(2) lattice data [41] and is supported
by an extended study [47] based on mean field theory
and large Nc QCD. Fourth, the improved (dressed) quark
and gluon degrees of freedom generated by the appropri-
ate gap equations permit a significantly truncated Fock
state expansion involving quasi-quarks and quasi-gluons
having mass gaps up to order 1 GeV. From energy con-
siderations it follows that the dominant component of the
Fock space expansion will therefore contain the minimum
number of constituents possible, and mixing with more
complex Fock states, which have higher energies, will be
suppressed.
One may also examine the role of the cutoff Λ in our

calculation. An effective method to incorporate a cutoff
in Hamiltonian perturbation theory (valid for this scale
being sufficiently high) has been developed for Coulomb
gauge QCD using flow equations [42]. This treatment leads
to Hamiltonian counterterms to compensate for the sup-
pressed highmomentum configurations, saliently the gluon
mass gap already discussed above. In a complete renormal-
ization treatment, such counterterms, involving the cutoff
or regulating parameter Λ, would be determined by fit-
ting to a known observable. Predictions would then be
made with results independent of choice to the observable
fitted. We have determined from previous studies [42, 43]
that it is possible to effectively bypass this procedure by
directly fitting the cutoff parameter to a selected observ-
able. As opposed to the rigorous treatment, this does intro-

duce some cutoff dependence, but the resulting parameter
sensitivity is not significant. Consult [34–37] for further
details.

3 Hamiltonian g2 corrections

As mentioned above, a previous hybrid application [44]
used this Hamiltonian but set the QCD coupling, g, to
zero. This truncation eliminated the quark–gluon inter-
action, Ja ·Aa, or “hyperfine” term, (4), and also the
non-linear (non-Abelian) component of the color magnetic
fields, (3) and (6). Now, both are included, so that the non-
confining part of the Hamiltonian is consistent to order g2.

3.1 Hyperfine correction

As explained in [35], theHqg interaction containing the J
a ·

Aa operators is treated perturbatively to second order in
g. Then the gluonic operators and intermediate states are
modeled with an effective, but non-confining, quark hyper-
fine interaction with a Ja ·Ja form. The resulting trans-
verse gluon exchange interaction, specified by (16), retains
the same color structure, while its kernel (transverse gluon
propagator) reflects the Coulomb gauge

Ûij(x,y) =

(
δij−

∇i∇j
∇2

)
x

Û(|x−y|) . (21)

The contribution of VT to the hadron mass is represented
by the Feynman diagrams in Fig. 1. For Û we used the
modified Yukawa potential from [35], which is consistent
with lattice results [41]. It incorporates a non-zero mass,
mg = 600MeV, for the exchanged gluon, that suppresses
propagation. Fourier transforming to momentum space,
this continuous potential takes the form

U(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 8.04
p2

ln−0.62
(
p2

m2g
+0.82

)

ln0.8
(
p2

m2g
+1.41

) , p >mg ,

− 24.50
p2+m2g

, p <mg .

(22)

Alternative potential forms have also been investigated [35]
but found to provide very similar results, provided the
transverse gluon propagator is suppressed and matrix
elements of the potential have the same value.

Fig. 1. The hyperfine correction entails the exchange of
a gluon between q and q and qq annihilation
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Fig. 2. The non-Abelian correction with triple gluon vertices

3.2 Non-Abelian correction

Similarly, the non-Abelian components of the color mag-
netic fields, gfabcAb×Ac, in the kinetic energy are also in-
cluded perturbatively through (Ja ·Aa)(Ba ·Ba). The re-
sulting non-Abelian interaction is represented by the Feyn-
man diagram in Fig. 2 and is given by

VNA =
1

4

∫ ∫
dxdyfabcεijkεilm (23)

×
[
Jah (y)(∇

(x)
j Ûkh(x,y))A

b
l (x)A

c
m(x)

+Jbh(y)(∇
(x)
j A

a
k(x))Ûlh(x,y)A

c
m(x) (24)

+Jch(y)(∇
(x)
j A

a
k(x))A

b
l (x)Ûmh(x,y)

]
.

where Ûij is the same kernel as appearing in the hyperfine
potential.

4 Gap equation

Having defined the model Hamiltonian, the next step is
to calculate the ground state. Since we are free to ex-
pand the field operators in any complete basis, we follow
the Bardeen–Cooper–Schrieffer (BCS) method and per-
form a Bogoliubov–Valatin rotation,

BλC(k) = cos
θk

2
bλC(k)−λ sin

θk

2
d†λC(−k) ,

DλC(−k) = cos
θk

2
dλC(−k)+λ sin

θk

2
b†λC(k) ,

αa(k) = coshΘka
a(k)+sinhΘka

a†(−k) , (25)

which transforms the bare particle operators aa, bλC and
dλC into the dressed, quasi-particle operators α

a, BλC and
DλC , respectively. Now the fields are

ΨC(k) = Uλ(k)BλC(k)+Vλ(−k)D
†
λC(−k) ,

Aa(x) =

∫
dk

(2π)3
1
√
2ωk
[αa(k)+αa†(−k)]eik·x ,

Πa(x) =−i

∫
dk

(2π)3

√
ωk

2
[αa(k)−αa†(−k)]eik·x ,

where ωk = ke
−2Θk . Note that the dressed quark expan-

sion remains functionally invariant with respect to the
bare case, since the quasi-particle spinors have the inverse

rotation

Uλ(k) = cos
θk

2
uλ(k)−λ sin

θk

2
vλ(−k)

=
1
√
2

[ √
1+sinφkχλ√
1− sinφkσ · k̂χλ

]
, (26)

Vλ(−k) = cos
θk

2
vλ(−k)+λ sin

θk

2
uλ(k)

=
1
√
2

[
−
√
1− sinφkσ · k̂χλ√
1+sinφkχλ

]
. (27)

Here the quark gap angle, φk = φ(k), is related to the BCS
angle θk by tan(φk− θk) =m/k. The quasi-particle (BCS)
vacuum, defined byBλC |Ω〉=DλC|Ω〉= αaµ|Ω〉= 0, is con-
nected to the bare parton one, bλC|0〉= dλC|0〉= aaµ|0〉= 0,
by

|Ωquark〉= e
−
∫

dk
(2π)3

λ tan
θk
2 b
†
λC(k)d

†
λC(−k)|0〉

|Ωgluon〉= e
−
∫

dk
(2π)3

1
2 tanhΘkDµµ′ (k)a

a†
µ (k)a

a†
µ′
(−k)
|0〉 .

The BCS vacuum, |Ω〉= |Ωquark〉⊗ |Ωgluon〉, now contains
quark and gluon condensates (correlated qq̄ and gg Cooper
pairs). Performing a variational minimization of the vac-
uum expectation value of the Hamiltonian, δ〈Ω|Heff|Ω〉 =
0, independently with respect to φk and ωk, yields the mass
gap equations for each sector:

ksk−mck =
2

3

∫
dq

(2π)3
[
(skcqx− sqck)V (|k−q|)

−2cksqU(|k−q|)+2cqskW (|k−q|)
]
, (28)

ω2k = k
2−
3

4

∫
dq

(2π)3
V (|k−q|)[1+x2]

(
ω2q −ω

2
k

ωq

)

+
3

4
g2
∫
dq

(2π)3
1−x2

ωq
, (29)

where

W (|k−q|)≡ U(|k−q|)
x(k2+ q2)− qk(1+x2)

|k−q|2
,

(30)

with sk = sinφk, ck = cosφk and x= k ·q. The last term
in (29) originates from the non-Abelian component of the
gluon kinetic energy. Dimensional analysis of the above in-
tegrals reveals that the first equation is UV finite for the
linear potential, since VL(|p|) =−8πσ/p4, but not for the
Coulomb potential VC(|p|) =−4παs/p2. In (29) there are
both logarithmical and quadratical divergences in the UV
region and an integration cutoff, Λ= 4GeV, determined in
previous studies is used.
Once the current quark masses are fixed, the gap equa-

tions can be solved numerically for the quark and gluon gap
angles. Using |q〉 = BλC(k)†|Ω〉 and |g〉 = αaµ(k)

†|Ω〉, the
quark and gluon self-energies are respectively

εk ≡ 〈q|Heff|q〉=msk+kck

−
2

3

∫
dq

(2π)3
[
[sksq+ cqckx]V (|k−q|)

+2sksqU(|k−q|)+2cqckW (|k−q|)
]

(31)
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and, for fixed color index a (no sum),

εµµ
′

k ≡ 〈Ω|αaµ(k)Heffα
a
µ′(k)

†|Ω〉=
ω2k+k

2

2ωk
δµµ′

−
3

4

∫
dq

(2π)3
V (|k−q|)

ω2k+ω
2
q

ωqωk
Dµµ′(q)

+
9

2
g2
∫
dq

(2π)3
1

2ωkωq

×
[
2Dµµ′(k)−Dµν(k)Dνν′(q)Dν′µ′(k)

]
,

(32)

both of which are infrared divergent in the presence of an
infrared enhanced kernel. This is a welcome feature of this
approach, as colored states are removed from the spec-
trum. The infrared divergence cancels however in bound
state equations for color singlet states leading to a physical
spectrum of mesons and baryons.

5 Hybrid mesons

In previous publications [34–37]we have used this model to
study the two-body meson and glueball systems by diago-
nalizingHeff using the Tamm–Dancoff and Random Phase
Approximations. We also made predictions for three-body
glueballs (oddballs) [36] and published [44] a brief study
of the three-body hybrid meson using a variational treat-
ment. We now extend the latter and also provide more
complete details of the variational calculation.

5.1 Wavefunction ansatz and quantum numbers

Following our initial study [44], we work in the hybrid cen-
ter of momentum system, coincident with the BCS frame
defining the Coulomb gauge Hamiltonian, and we denote
the momenta of the dressed quark, anti-quark and gluon
by q, q̄ and g, respectively. We then define q+ ≡

q+q
2 ,

q− ≡ q− q and note that g=−q− q =−2q+.
The color structure of a qq̄g hybrid is determined by the

SU(3) algebra:

(3⊗3)⊗8 = (8⊕1)⊗8= (8⊗8)⊕ (8⊗1)

= 27⊕10⊕10⊕8⊕8⊕1⊕8 . (33)

Note for an overall color singlet the quarks must be in an
octet state like the gluon. As discussed below, this leads
to a repulsive qq̄ interaction, confirmed by lattice at short
range, which increases the mass of the hybrid meson. The
hybrid wavefunction will therefore involve the color struc-
ture T aC1C2B

†
C1
D†C2α

a† and has the general form

|ΨJPC〉=

∫ ∫
dq+
(2π)3

dq−
(2π)3

ΦJPCλ1λ2µ
(q+,q−)

×T aC1C2B
†
λ1C1
(q)D†λ2C2(q)α

a†
µ (g)|Ω〉 , (34)

which is summed over color and angular momentum mag-
netic sub-states.

There are five angular momenta in this system, two or-
bital, l± (associated with q±), having z projections m±,
and the three spins, Sq = Sq = 1/2 and Sg = 1, with pro-
jections λ1, λ2 and µ, respectively. To form states with
total angular momentum J , with projectionmJ , we use the
coupling scheme

S= Sq+Sq, j= Sg+ l+, L= j+ l−, J= L+S .

Then with the appropriate Clebsch–Gordan coefficients,
the hybrid wavefunction can be expressed in terms of a ra-
dial wavefunction F JPC(q+, q−) and spherical harmonics,
Y
m±
l±
(q±),

ΦJPCλ1λ2µ
(q+,q−) = F

JPC(q+, q−)Y
m+
l+
(q̂+)Y

m−
l−
(q̂−)

× (−1)
1
2−λ2

〈
1

2

1

2
, λ1(−λ2)|SmS

〉

× (−1)µ〈1l+, (−µ)m+|jmj〉

× 〈jl−,mjm−|LmL〉〈LS,mLmS |JMJ〉 .

Since the intrinsic parity for a qq̄ pair and a gluon
are both −1, and the two orbital parities are (−1)l− and
(−1)l+ , the total hybrid meson parity is

P = (−1)(−1)(−1)l+(−1)l− = (−1)l++l− . (35)

Table 2. Hybrid meson quantum numbers up to J = 3. Note
the exotic states and states forbidden by transversality: l+ = 1
cannot couple to j = 0

l+ l− S j L J P C JPC

0 0 0 1 1 1 + − 1+−

0 0 1 1 1 0 + + 0++

0 0 1 1 1 1 + + 1++

0 0 1 1 1 2 + + 2++

0 1 0 1 0 0 − + 0−+

0 1 0 1 1 1 − + 1−+ Exotic

0 1 0 1 2 2 − + 2−+

0 1 1 1 0 1 − − 1−−

0 1 1 1 1 0 − − 0−− Exotic

0 1 1 1 1 1 − − 1−−

0 1 1 1 1 2 − − 2−−

0 1 1 1 2 1 − − 1−−

0 1 1 1 2 2 − − 2−−

0 1 1 1 2 3 − − 3−−

1 0 0 0 0 0 − − 0−− Forbidden

1 0 0 1 1 1 − − 1−−

1 0 0 2 2 2 − − 2−−

1 0 1 0 0 1 − + 1−+ Forbidden

1 0 1 1 1 0 − + 0−+

1 0 1 1 1 1 − + 1−+ Exotic

1 0 1 1 1 2 − + 2−+

1 0 1 2 2 1 − + 1−+ Exotic

1 0 1 2 2 2 − + 2−+

1 0 1 2 2 3 − + 3−+ Exotic
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Finally, exchanging all additive quantum numbers, as
required by charge conjugation, yields a (−1)l−+S factor
from the space and spinor qq components that needs to
be combined with the phase of the qqg composite color
component. Although the gluon octet is not an eigenstate
of C-parity, each gluon has a qq octet partner with oppo-
site C-parity, resulting in a −1 contribution for the com-
bined [[3⊗ 3̄]8⊗8]1 system. Therefore the hybrid C-parity
is

C = (−1)(−1)l−+S = (−1)1+l−+S . (36)

The extra −1 phase, as compared to a conventional qq
meson having C-parity (−1)l−+S , is responsible for gen-
erating exotic quantum numbers for certain hybrid states
(e.g. JPC = 1−+). Table 2 lists quantum numbers for
the model hybrid states for J up to 3. Note the ex-
otic quantum number states and also states forbidden
by the Coulomb gauge transversality condition (gluon
orbital l+ = 1 cannot couple with its spin to produce
j = 0).

5.2 Variational equations of motion

We now compute the hybrid mass, MJPC , for each J
PC

with special interest focusing upon the exotic states. In
terms of the above variational wavefunction, the upper
bound for the mass is given by

MJPC =
〈ΨJPC |Heff|ΨJPC〉

〈ΨJPC |ΨJPC〉

=Mself+Mqq+Mqg+Mqgq+Mggg . (37)

Here, the subscripts indicate the mass contribution from
the self-energy of the three constituents, Mself, the qq in-
teraction, Mqq, the qg and qg interactions, Mqg, the sec-
ond order correction from the qgq and qgq vertices, Mqgq,
and the second order correction from triple gluon vertices,
Mggg. The three-body expectation value entails twelve di-
mensional integrals, which can be reduced to nine dimen-
sions by working in the center of momentum. The detailed
expressions are

Mself =

∫ ∫
dq

(2π)3
dq

(2π)3

×ΦJPC†λ1λ2µ
(q,q)ΦJPCλ1λ2µ

′(q,q)

×
[
Dνν′(g)(εq+ εq)+Dµν(g)Dµ′ν′(g)ε

νν′

g

]
,

(38)

Mqq =−
1

2

∫ ∫ ∫
dq

(2π)3
dq

(2π)3
dq′

(2π)3

×ΦJPC†λ1λ2µ
(q,q)ΦJPCλ′1λ

′
2µ
′(q
′,q+q−q′)Dµµ′(g)

×

[
1

3
V (|q′−q|)U†λ1qUλ′1q′V

†
λ′2q+q−q

′Vλ2q

+V (|q+q|)U†λ1qVλ2qV
†
λ′2q+q−q

′Uλ′1q′
]
, (39)

Mqg =
3

4

∫ ∫ ∫
dq

(2π)3
dq

(2π)3
dq′

(2π)3

×

[
ωq+q+ωq′+q
√
ωq+qωq′+q

ΦJPC†λ1λ2µ
(q,q)ΦJPCλλ2µ′

(q′,q)

×Dµ′µ′′(q+q)Dµµ′′(q+q)V (|q−q
′|)U†

λq′Uλ1q

+
ωq+q+ωq+q′
√
ωq+qωq+q′

ΦJPC†λ1λ2µ
(q,q)ΦJPCλ1λµ′

(q,q′)

×Dµ′µ′′(q+q
′)Dµ′′µ(q+q)V (|q−q

′|)V†
λq′Vλ2q

]
,

(40)

Mqgq =
1

2

∫ ∫ ∫
dq

(2π)3
dq

(2π)3
dq′

(2π)3

×ΦJPC†λ1λ2µ
(q,q)ΦJPCλ′1λ

′
2µ
′(q
′,q+q−q′)Dµµ′(g)

×

[
1

3
Umn(q

′−q)U†λ1qαmUλ′1q′V
†
λ′2q+q−q

′αnVλ2q

+Umn(q+q)U
†
λ1q
αmVλ2qV

†
λ′2q+q−q

′αnUλ′1q′
]
,

(41)

Mggg =
3

8
i

∫ ∫ ∫
dq

(2π)3
dq

(2π)3
dq′

(2π)3

×
1

√
ω−q′−qωq+q

ΦJPC†λ1λ2µ
(q,q)ΦJPCλ′1λ2µ

′(q
′,q)

×
(
U†λ1qαhUλ′1q′ +V

†
λ1q
αhVλ′1q′

)
(42)

×
{
∇lUkh(q−q

′)
[
Dµk(g)Dlµ′(−q

′−q)

−Dµl(g)Dkµ′(−q
′−q)

]

+ i(q−q′)lUlh(q
′+q)Dµk(g)Dkµ′(−q

′−q)

− iUkh(q−q
′)
[
(q′+q)lDµl(g)Dkµ′(−q

′−q)

+(q+q)lDµk(g)Dlµ′(−q
′−q)

]}
. (43)

In the above expressions, εq, εq and ε
µµ′

g are the quark,
anti-quark and gluon self-energies, respectively, evaluated
at the indicated momentum (g =−q−q). A pictorial rep-
resentation for each type of contribution is given by the
Feynman diagrams in Fig. 3.
The above expectation values are then computed

variationally using the separable radial wavefunction,
F (q+, q−) = f(q+, α+)f(q−, α−), having two variational
parameters, α+ and α−. We investigated two functional
forms for f ; a gaussian and a scalable numerical solution
from our two-body meson studies. In general, the gaussian
radial wavefunction,

f(q±, α±) = e
−x2± , x± =

q±

α±
, (44)

provided better results (lower variational mass) for s-wave
states when compared to the numerical one. This was also
true for p-wave orbital excitations, provided the gaussian
was multiplied by x± corresponding to l± = 1. All inte-
grals were calculated using the Monte Carlo method with
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Fig. 3. Diagrams for 〈ΨJPC |Heff|Ψ
JPC 〉

the adaptive sampling algorithm VEGAS [48, 49]. The in-
tegrals were evaluated several times with an increasing
number of points until there was convergence. The hy-
brid mass error introduced by this procedure is about
±50MeV. For each JPC hybrid state we optimized the
variational parameters α+ and α− to produce the low-
est mass. In terms of the string tension, their values fell
in the ranges 0.9

√
σ ≤ α+ ≤ 1.7

√
σ and 1.0

√
σ ≤ α− ≤

3.3
√
σ.

6 Results: Hybrid meson spectrum

6.1 Light hybrid mesons

For the light hybrid calculation we usedm= 5MeV [50] for
the u/d current quark mass. Results are listed in Table 3,
which shows that the ground state is the 0++ non-exotic
scalar, followed by the triplet 1+−, 2++ and 1++. The light-
est hybrid mass is 2.1GeV.
For exotic states, as can be seen from Table 2, at least

one p-wave in q+ or q− is required. Because the qq̄ in-
teraction is repulsive for quarks in a color octet state, the
excitation energy is less for a l+ (gluon orbital) excita-
tion than a l− (qq̄ orbital) excitation since the quarks are
further separated and experience a larger repulsive linear
force.
The lightest exotic state is the I = 1, 1−+ state, with

mass 2.2 GeV. This is slightly higher than the flux tube
model and lattice QCD predicted masses for this state,
which were between 1.7 and 2.1GeV (see Table 1).
We studied the effects from including the non-Abelian

(NA) and hyperfine corrections for several states. Gener-
ally, both effects were small (except the hyperfine correc-
tion for charmed quarks, see below), roughly of the same
order as the overall 50MeV Monte Carlo error. In particu-
lar, the NA correction entailed several terms with different
signs, which tended to cancel.
Our model exotic spectrum (see Fig. 4) spans almost

a GeV, between 2.1 and about 3 GeV and includes predic-
tions for J up to 3. There are no exotic J = 2 model states
in this region, since they require a d-wave or two p-waves,
both involving much higher excitations.

Table 3. Spectrum of light hybrid meson states. Error ≈
±50MeV

(I)JPC MJPC (MeV) MJPC (MeV)

no corrections with g2 corrections

(0)0++ 2080 2135

(1)0++ 2065 2100 Ground

(0)1+− 2135 2140 ∗

(1)1+− 2135 2140 ∗

(0)2++ 2340 2335

(1)2++ 2180 2170

(0)1++ 2415 2470

(1)1++ 2110 2170

(0)1−+ 2500 2525 Exotic

(1)1−+ 2205 2220 Exotic

(0)0−− 2275 2280 Exotic

(1)0−− 2280 2285 Exotic

(0)1−+ 2370 2400 Exotic∗

(1)1−+ 2370 2400 Exotic∗

(0)1−+ 2760 2790 Exotic

(1)1−+ 2570 2600 Exotic

(0)3−+ 3030 3040 Exotic

(1)3−+ 2910 2915 Exotic

∗ Isospin degenerate states

Fig. 4. uug spectrum

Finally, we comment on an interesting isospin split-
ting effect. From Fig. 3, annihilation terms only contribute
to the hybrid mass if the qq pair has quantum numbers
consistent with the interaction. This is satisfied when
Iqq = 0 and S = 1. The annihilation diagrams can in-
crease the I = 0 hybrid states by several hundred MeV,
as detailed in Table 3. In other cases, the 1+− and one
of the 1−+ states should be isospin degenerate, as we
compute to within the Monte Carlo error. On the other
hand, the states 0++ and 0−− are not expected to be de-
generate but, within the error, they are. It may be that
the isospin splitting is not zero, but rather is smaller
than the numerical error. Note that the annihilation pro-
cess for s-wave, isoscalar quarks in a triplet spin state
is analogous to e−e+ annihilation in the triplet state of
positronium.
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6.2 Strange hybrid mesons

Table 4 summarizes results obtained for the ss̄g (hidden
strangeness) hybrid mesons using a bare strange quark
mass of 80MeV. Now, the ground state is given by the non-
exotic pseudovector state 1+−, with a 2.125GeV mass, not
at all reflecting the 75MeV additional quark flavor mass
contribution (the hybrid calculation is only sensitive to
current quark masses above 200MeV). Our prediction is
in good agreement with the flux tube model and slightly
above the only lattice prediction (see Table 1). In the ex-
otic sector, the lightest state is given by 0−−, with mass
2.3 GeV. Although there are also hybrid states with ex-
plicit strangeness, e.g. sūg, we do not show predictions,
since the effect from the s/u quark mass difference is small.

6.3 Heavy hybrid mesons

Table 5 shows the results for the cc̄g (charmonium) hy-
brid mesons using a charmed quark mass of 1.0GeV. The
ground state is given, again, by the 1+− state, with mass
3.83 GeV, while the lightest exotic hybrid lies at 4.02GeV.
These numbers are in reasonable agreement with previous
lattice and flux tube predictions, as listed in Table 1.
Note that the correction introduced in the charmed

case by the g2 terms is roughly 500 to 600MeV, signifi-

Table 4. Spectrum of ss̄g states. Error ≈±50MeV

JPC MJPC (MeV) MJPC (MeV)

no corrections with g2 corrections

1+− 2095 2125 Ground

0++ 2045 2140

2++ 2290 2315

1++ 2325 2420

1−+ 2350 2395 Exotic

0−− 2270 2300 Exotic

1−+ 2440 2485 Exotic

1−+ 2760 2820 Exotic

3−+ 2995 3030 Exotic

Table 5. Spectrum of cc̄g states. Error ≈±50MeV

JPC MJPC (MeV) MJPC (MeV)

no corrections with g2 corrections

1+− 3310 3830 Ground

0++ 3295 3945

2++ 3410 3965

1++ 3450 4100

1−+ 3545 4020 Exotic

0−− 3510 4020 Exotic

1−+ 3590 4155 Exotic

1−+ 3985 4565 Exotic

3−+ 4065 4615 Exotic

Fig. 5. Low lying ssg and ccg spectra

cantly higher than in the lighter hybrid systems, where
the average corrections are 25 to 50MeV. This large effect
arises from the hyperfine correction to the quark and anti-
quark self-energies (see (31) and (38)), which is enhanced
for heavier quark masses as discussed further in [35]. Re-
lated, and as illustrated in Fig. 5, the charmonium hybrid
spectrum now has a level ordering slightly different from
the lighter hybrid spectra.

6.4 Sensitivity to potential and parameters

One of our key findings using the Cornell potential is that
the mass of the lightest hybrid, especially the exotic 1−+,
is above 2 GeV. Because of the ramifications of this result
for exotic state searches, we have performed an interac-
tion sensitivity study by varying both potential forms and
parameters.
We first varied the parameters in the Cornell potential

to obtain a lower bound for our predicted exotic hybrid
mass. Results are shown in Table 6 for different Coulomb
potential parameters, αs, and string tensions, σ, found in
the literature. For any combination of values consistent
with previous studies [34–37] it was not possible to reduce
the light hybrid mass to 1600MeV. In particular, we tried
0.0≤ αs ≤ 0.4 and 367MeV ≤

√
σ ≤ 424MeV. Indeed, to

obtain a hybrid mass as low as 1600MeV required an un-
physical

√
σ = 262MeV.

Table 6 also lists predictions for the confining po-
tential given by (20) for values of the parameter mg =√
8πσ/12.25 corresponding to the two different Cornell

Table 6.Calculated light and charmonium hybrid 1−+ masses,
in GeV, using different interactions

potential/parameters I = 1 ud̄g hybrid cc̄g hybrid

Cornell (2)√
σ = 367MeV, αs = 0.4 2220 4155√
σ = 367MeV, αs = 0.2 2390 4415√
σ = 367MeV, αs = 0.0 2540 4645√
σ = 424MeV, αs = 0.4 2555 4525

Renormalized (20)
mg = 526MeV 2705 4730
mg = 607MeV 3010 5130
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string tensions σ but with the same current quark masses
(mu = 5MeV, mc = 1GeV). Note that this interaction
yields ud̄g and cc̄g hybrids that are heavier than those
given by the Cornell potential. Most significantly, this po-
tential also predicts the lightest exotic hybrid has mass
above 2 GeV. If instead we use mc = 0.85GeV, which pro-
vides a reasonable description of the charmonium spec-
trum, the 1−+cc̄g mass decreases to 4815MeV for mg =
607MeV.

7 Searching for hybrid mesons

Discovering exotic hadrons is a major goal motivating the
Jefferson Lab 12 GeV upgrade and is also an important col-
laborative project at other facilities, such as Babar, Belle,
RHIC, etc. For low energy investigations of light quark ex-
otic systems there is, unfortunately, no clean energy scale
demarcation, since ΛQCD governs the momentum distribu-
tions in light mesons, and the strange quark mass is of the
same order of magnitude. The obvious detection strategy
is therefore to perform statistically accurate cross sections
measurements to extract partial wave amplitudes with ex-
plicitly exotic quantum numbers not accessible to ordinary
qq̄ states. However for (hidden) exotica with conventional
meson quantum numbers, it will be difficult to establish
their nature. Note that certain flux tube model [20] and
lattice predictions indicate that p-wave hybrid mesons pre-
fer to decay to hadron pairs with one hadron also having
a p-wave, rather than to two s-wave hadrons with a rela-
tive motion p-wave, e.g. ηh1 in an s-wave as opposed to ππ
in a p-wave. It will be interesting to check this prediction
experimentally.
For heavier quark systems, however, we propose a novel

way to distinguish excited conventional, radially excited
quarkonia from hybrid states. The method is based upon
the energy scale separation provided by the heavy quark
mass and involves two key points. First, we note that,
due to the gluon mass gap scale, a conventional qq̄ ground
state (e.g. a well established J/ψ or Υ , etc.) is lighter than
a qq̄g ground state hybrid with the same flavor. Indeed, the
ground state hybrid mass is more comparable to a radially
excited quarkonium state. For example in our approach the
ψ(4s) and the ground state vector cc̄g state have similar
masses. Now different eigenstates of a Hermitian Hamilto-
nian are orthogonal with the nth radial excited state hav-
ing n−1 nodes. Therefore, even though the total energies
(masses) are similar, the relative momentum distribution
of the quarks in excited charmonium looks quite different
from the quarkmomentum distribution in the ground state
hybrid with the same quark flavors (see Figs. 6 and 7).
The second point involves the Franck–Condon (FC)

principle widely used in molecular physics. Franck and
Condon were the first to appreciate that molecular elec-
tronic transitions proceed too rapidly for the much heavier
nuclei to respond. The FC principle is applicable when-
ever there is a mass scale separation between different par-
ticles. In the context of quarkonium this means that the
light fields (pions, gluons, etc.) quickly rearrange and the

Fig. 6. Probability density, |ψ(p)|2, for the 4s charmonium
state. This is the relative cc̄ quark momentum distribution

Fig. 7. Typical quark relative momentum distribution in a cc̄g
hybrid state with a mass near 4300 MeV. The extra mass en-
ergy, relative to a cc̄ J/ψ, corresponds to gluon field excitations
in collective models such as the flux tube approach or in the
quasi-particle (gluon) mass gap in the constituent picture, but
not in nodal radial excitation for the relative cc̄ motion (com-
pare to the radially excited charmonium distribution in Fig. 6)

heavy quarks do not appreciably change their momentum
distribution in the decay. Hence, the relative momentum
between the decay products directly correlates with the
quark momentum distribution in the parent quarkonium.
Unfortunately in the simplest two-body decays such as

ψ(ns)→DD̄ , Υ (ns)→BB̄ ,

the FC constraint is not relevant, since in the center of
mass frame the momentum of the final products is fixed.
This leads to smaller wavefunction overlaps, suppressing
the decay somewhat. However in three-body decays such as

ψ(ns)→DD̄π , Υ (ns)→BB̄π ,

the FC constraint applies. The first reaction can be em-
ployed to study the recently discovered ψ(4260). The sec-
ond will be useful in an envisioned Belle collaboration
measurement to establish whether this excited bottomo-
nium state is the predicted quark model 5smeson state.
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Thus, we contend that the relative momentum distribu-
tion between theD and D̄ mesons in theDD̄π system mir-
rors the momentum distribution of the quarks in the parent
ψ meson. Since the hybrid ground state wavefunction does
not have a node, the resulting momentum distribution for
the DD̄ subsystem is also node-less and thus smoother
than that for a conventional radially excited charmonium.
Including the relevant phase space for this decay, yields the
momentum distribution in Fig. 8 that can be observed ex-
perimentally in the heavy-quark limit. The maximum is in
the mid-momentum region where phase space is larger and
the wavefunction is near a local maximum.
However, since quarks are not infinitely heavy, the FC

signature will be modified by their recoil and for the above
discussed decays, involving c(b)-quarks in the D(B) me-
son, corrections to the momentum distribution will be of
order mD−mc

mc
� 0.2. For example, taking a quark relative

momentum between 150 and 200MeV inside the daugh-
ter meson, one obtains the cc̄g momentum distribution il-
lustrated in Fig. 9 for the ground state vector hybrid and
the smeared final state DD̄ momentum distribution plot-
ted in Fig. 10 for radially excited charmonium. As can be
seen, even after smearing there is still residual structure
information adjacent to the central peak for radially ex-
cited charmonium that is reminiscent of its parent char-
monium wavefunction behavior, in sharp contrast to the
smooth, bell-shaped hybrid distribution. Other corrections
involving the lighter π emission are similarly expected to
be of this order and a more complete analysis would be
worthwhile especially in the context of non-relativistic-
QCD [52].
We therefore advocate analyzing the DD̄ and BB̄ rela-

tive momentum distributions in DD̄π and BB̄π decays of
highly excited quarkonia. Additional final state pions or
other light particles do not alter our arguments (but re-
strict somewhat the available phase space), so there are
several other possible final state channels to search.

Fig. 8. Momentum distribution of Fig. 6 multiplied by the
phase space for the decay ψ(4260)→DD̄π. This is the prob-
ability density for finding a DD̄π state with relative DD̄ mo-
mentum p according to the Franck–Condon principle in the
heavy-quark limit. This signature will be more robust for the
related bottomonium process Υ (5s)→BB̄π

Fig. 9. The relative momentum distribution of the DD̄ pair in
the DD̄π final state for a charmed hybrid meson with momen-
tum distribution given in Fig. 7. The distribution of the final
products has a smooth bell shape, in sharp contrast to the ra-
dially excited quarkonium distribution in Fig. 10

Fig. 10. The momentum distribution in Fig. 8 (solid line) and
the distribution (dots) obtained averaging over a 150 MeV
spread to approximate the actual quark momentum distribu-
tion in the D meson. The experimental signal, firmer for bot-
tomonium than for charmonium, is a central peak with two
shoulders for the relative momentum distribution of the BB̄
(or DD̄) pair in the BB̄π (or DD̄π) final state. These adja-
cent enhancements identify the resonance as a radially excited
quarkonium state as opposed to a hybrid meson

8 Discussion and conclusions

Our key model predictions are that the lightest hybrid
mass is 2.1 GeV, with the lightest 1−+ exotic state slightly
above 2.2GeV. Lattice and flux tube calculations gener-
ally yield a mass of at least 1.8GeV for the 1−+. Thus,
the composite model analyses appear to preclude the possi-
bility of the reported 1−+ exotica, π1(1400) and π1(1600),
being hybrid mesons. If this is correct, one should in-
vestigate other structures for those two hadrons, such as
tetraquark molecules, with both qq pairs in color singlets,
or tetraquark atoms, where quark pairs are in intermediate
non-singlet color states, and we are currently applying our
model to these systems. We note that one lattice 1−+ pre-
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diction [18] is as low as 1.7 GeV, which does not exclude the
observed π1(1600) from being a hybrid, but this still does
not explain the structure of the π1(1400). It would be very
useful to have other lattice measurements, using the same
parameters as [18], to confirm or reject this result, we have
also varied our model parameters and potential forms to
obtain a lower bound for our predicted exotic hybrid mass,
which is clearly above 2 GeV.
Regarding isospin splitting, our results show an en-

hanced splitting from g2 corrections. For the 0++ hybrid,
the corrections increased the splitting from 15 to 35MeV,
the maximum increase in the light hybrid spectrum.
In the strange sector, we predict the lightest non-exotic

hybrid mass is 2.125GeV, while the lightest exotic mass
is 2.30GeV. These values compare reasonably well with
flux tube [20–22] and, slightly lighter, lattice [18] results.
For the charmed sector, our predictions of 3.83GeV for the
lightest hybrid and 4.02 GeV for the lowest exotic are also
in good agreement with several other lattice and flux tube
studies (see Table 1).
As mentioned above, the different g2 corrections pro-

duced an overall small effect, about the same order as the
Monte Carlo error. However, the hyperfine correction be-
comes important for a heavier quark mass. In the charmed
sector, this correction added about 500 to 600MeV to the
hybrid mass. Lastly, note that the level orderings of the ex-
otic isoscalar uug and ssg spectra are the same, 0−−, 1−+,
1−+, 1−+ and 3−+, but slightly different than the exotic
ccg system, where the 0−− and lowest 1−+ are degenerate.
This is a consequence of the enhanced charmonium self-
energy from the hyperfine interaction.
Finally, we discussed how the Frank–Condon principle

provides a useful constraint on the final state momentum
distributions following decay, which should assist experi-
mentalists in identifying heavy hybrid systems.
In summary, lattice, flux tube and our Heff many-

body approach all yield similar hybrid spectra and predict
that the lightest 1−+ exotic hybrid meson mass is near
2 GeV. This composite model agreement indicates that the
π1(1600) is not a hybrid meson but has an alternative
structure. If this is true and if the π1(1600) exists, it is
more likely a tetraquark system, either a (qq) (qq) meson
molecule or an exotic qqq̄q̄ atom. Future work will apply
our model to light and heavy tetraquark systems including
mixing with hybrid and conventional meson states. Three-
body forces [51] will also be examined.
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